Swift Custom Operators:
The Good, the Bad and the Ugly

II

Ll BUONO,
I1L. BRUTTO,

IL CATTIVO.

Apout the Author: Mike Gerasymenko

- Working on i10S since 2008 (iOS 2.2)
- Around 35 apps for the AppStore

With Wire since March 2014

Preface: Terminology

Operator describes operation, which is a calculation from zero or more input values
(operands) to an output value.

Arity of operators:
e unary: !x, x4++4, x--, x~, --x, ++x
« binary: x+vy, x-y
» ternary: x? a: b
e n-ary
* Placement

 Prefix: 'x
» Infix: x+y
 Postfix: x++

Preface: Precedence and Associativity

During the evaluation of the expression, first the operators with the higher precedence
are being evaluated, for example:

+ x=a-+b*cisx=a+ (b*c)
Given that the precedence is equal for the operators, the operators are evaluated

according to their associativity, left, right or non-associative. Having left associativity
means that the operations are performed from left to right, for example:

+ x=a+b+cisx=(a+b)+c

Pretace: Extras

Overloading means that the same operator can work with different types:
operator+ can be applied to Int, Double, ...
Short-circuit evaluation means that operand is only calculated when necessary:

evaluation of false && obj.isTrue() would not invoke obj.isTrue()

The Good: Syntax

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
L
45
46
47

Game: spot the operator

var result = [Cat]()

for i in 0..<100 {
do {

let cat = try CatFactory.generateCat()

if cat is PallasCat {

let anotherCat = try CatFactory.generateCat()

1f let anotherPallasCat
debugPrint("0h boy")
+
+

else if let aCat = cat {
result = result + [aCat]
}

}

catch let error as NSError {

}

anotherCat as? PallasCat {

[=],
g00.gl/FIPNQO

Those are also Operators

postfix ?, !

as, as?, as!, Is

try, try?, try!

The Good: Syntax

Swift is really flexible with operator definition:

Operator definition consists of two parts: operator declaration and at least one
function that gives the meaning to an operator

Arity, placement, precedence and associativity can be defined per operator

Rich set of operators that could be defined (standard operation characters + UTF8)

Swift gives the ability to overload almost any existing operator (except is, as, as?,
=, ??, prefix &, postfix ?, ! and «? :»)

10

The Good: Syntax: Operator Declaration

Operator:

PP~ prefix operator OperatorName associativity I—\— left precedence @

— infix — right

— postfix “— none

e
o

Operator ::= (prefix | infix | postfix) operator 'OperatorName' '{' associativity (left | right | none) precedence 'Value' '}'

Operand:

> (I OperandName H ' S e (I OperandType '—N

l ~
inout — @autoclosure '—/
e

— @noescape

Operand ::= (inout |) 'OperandName' ':' ('@autoclosure' | '@noescape' |) 'OperandType'

Function:

pp— func FuncName

Operand ReturnType

Function ::= func 'FuncName' '(' 'Operand’'+ ')' '->' 'ReturnType'

... generated by Railroad Diagram Generator §

The Good: Let's define an operator

Playground time (page DefiningOperator)

12

The Good: Being functional

Playground time (page BeingFunctional)

13

The Bad: Usetulness

Why there’s no such operator before?

15

The Bad: Usetulness

Playground time (page AttributedString)

16

The Bad: Ungerstanding of new operators

New operator could be puzzling for other developers

Overloading an existing operator could give a hard time debugging the code where it is
not clear that new overloaded implementation is used

17

The Bad: Global Scope

Whatever you define, it would appear at the global scope.

Operators from frameworks are visible in user code

Being Iin global scope makes it easy to collide implementing same operator in the
different way in framework and in user code

18

The Ugly: Going Nuts

Playground time (page GoingNuts)

20

£

, .
v,'f:.’_’.{')

AL

ol

- " |

. With great power
ad -
comes great responsibility.

curiosities

Non-assoclative

« operator==Is non-associative, so it Is harder to shoot your
own foot:

« For example, x ==y ==z In C would evaluate as (x ==vy) == z,
and nottox ==y, y==

23

Nice applications

Libraries that are making use of custom operators
Cartography
Euler by mattt

Swift go

24

Questions

N |
=8 |
=
= i
=
=
=
=
=
=

=
Z

- —— e — ——————————
T (5 £ 7 £ ey 9 (29 £ (2 B)
S 9 10 (69 o B 5 9 (9 £ S

o= o pe s s Job s VS R TR [[

SAMSUNG

Regards to my rellow colleagues

References

The Swift Programming Language https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift Programming_Language/

Facets of Swift, Part 5: Custom Operators https://medium.com/swift-programming/
facets-of-swift-part-5-custom-operators-1080bc78ccc#.l40cmmsy2

Functional Programming in Swift http://five.agency/functional-programming-in-swift/

Railroad Diagram Generator http://www.bottlecaps.de/rr/ui

100 Most Popular Cat Names https://www.cuteness.com/popular-cat-names

28

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://medium.com/swift-programming/facets-of-swift-part-5-custom-operators-1080bc78ccc#.l40cmmsy2
http://five.agency/functional-programming-in-swift/
http://www.bottlecaps.de/rr/ui
https://www.cuteness.com/popular-cat-names

Contact gata

Mike Gerasymenko

Mihall@gerasimenko.me
(find me on Wire using this emall)
Mmike@wire.com

Wire

© 2014 WIRE SWISS GMBH. PROPRIETARY AND CONFIDENTIAL.

