
Caching external SPM packages
Cocoaheads Berlin January 2023

Who I am
Hey, I'm Mike. I am originally from Ukraine .

I started as an iOS engineer in 2009 at Readdle.
Worked at Wire, Cara Care and Feeld.

Twitter: @gk0io
Github: mikeger
Email: mike@gera.cx

https://twitter.com/gk0io
https://github.com/mikeger
mailto:mike@gera.cx

What is happening?
https://war.ukraine.ua/donate/

You know what to do. Thank you.

https://war.ukraine.ua/donate/

Where I work
I am a Staff iOS engineer at Delivery Hero
Logistics:

Available in 75 countries

Serving 1M delivery drivers monthly

We are constantly hiring mobile engineers.
Reach out if you are interested. Or apply at
https://careers.deliveryhero.com

https://careers.deliveryhero.com/

Previous talks around this topic

Moving a large project from Cocoapods to
Swift Package Manager
A video and a text version of this post from Cocoaheads Berlin September
2022 is available, here:

https://gera.cx/posts/move-to-spm

https://gera.cx/posts/move-to-spm

Build times
So far, the highest impact was Apple Silicon,
on CI and local

Still much slower than on web development

Takes up momentum, pushes out of the flow

-> Let's try to improve it

Note
If you are a Mobile Engineer like me, you’re likely extremely excited about Apple Silicon computers. They are performant and energy-efficient, but above all, they allow you to build your projects faster and without jet engine fan sounds. However, even with this improvement, the compilation times are very far from what you are getting in web development. Building locally, or on the CI, takes up momentum and can occasionally push you out of the flow, decreasing overall productivity.

Luckily, there are a couple of improvements for build time.

Looking at the build timeline

Xcode 14 feature can provide insights over build times and thread utilization

What takes up compilation time?

For our product, out of 10 minutes build time,
around half spent building external SPM
dependencies.

We are doing it on every clean build:

Every CI run

Clean + Build on developer machines

Additonally, it does not change that frequently

Note
Looking at the build logs and build timeline available in Xcode 14, I see that from the 10 minutes it takes to compile my project, around half of the time is spent building external dependencies.

Why build the same things
over and over again?

“Insanity is doing the same thing over and
over and expecting different results.”

Albert Einstein

Same Input + Same Process =
Same Output
This optimization idea is used in many places.
So when building the same source files with the
same compiler, we should get the same
binaries.

Essentially, we'll cache the build results.

Note
If you process the same input, using the fixed process and configuration, you can usually expect the same output. This optimization idea is used in many places. The most basic would be caching: save the web page generated in the cache, to serve it again if requested a second time. This idea lays the foundation for something called hermetic build systems, like [Bazel](https://bazel.build/basics/hermeticity). So when building the same source files with the same compiler, we should get the same binaries.

Wait Mike, this is Bazel
I am not crazybrave enough to move from the vendor build system. Let's see
what is possible to achieve in the world of Swift Package Manager with the
existing tools.

Wait, I am sure I've seen similar tools before. Where was it?

Reinventing Carthage
Carthage allows this! Carthage is another
package management tool that was created
before SwiftPM. Carthage is building external
dependencies and packaging them as binary
XCFrameworks. Why not use it?

https://github.com/Carthage/Carthage

What we'll do
We'll move from using external dependencies
compiled by SPM at build time, to using pre-
compiled versions of the same dependencies:

1. Define external dependencies in the
Cartfile

2. Build external dependencies to XCFramework

3. Package all dependencies in your repo
using git-lfs

4. Add logic to unpack the dependencies if
required

Hm
But wait, would this mean we will be using two
different package managers?

Yes, but wait to see the full picture, we will only
need to use Carthage when we would need to
change the libraries' versions.

Let's get building
The first step would be to define the Cartfile ,
which is just a Carthage way of defining the list
of dependencies.

You can see the list of the packages your
project relies on in the Project preferences pane,
inside Xcode.

You would end up with something like this in
your Cartfile :

github "https://github.com/Alamofire/Alamofire.git" == 5.4.1
github "https://github.com/SwiftyJSON/SwiftyJSON.git" == 5.0.0
github "https://github.com/vadymmarkov/Fakery" == 5.0.0
github "https://github.com/SDWebImage/SDWebImage.git" == 5.8.2

Install and run Carthage

Carthage can be installed from Homebrew,
using brew install carthage .

Then you'll need to run carthage bootstrap --
use-xcframeworks --platform <Your platform, for

exmaple iOS> . Carthage would then fetch your
dependencies defined in Cartfile and sub-
dependencies. Then it would find binaries for
them (if provided) or would compile them from
sources. In the end, you would get all of them
compiled into XCFramework format.

Expose the frameworks to Swift Package Manager

XCFramework is nice, but if you are using Swift Package Manager for local
modules, you would need to carry out one additional step: create a package
that will expose those dependencies. This is necessary, since you cannot
declare a dependency on a bare framework in your file system: it has to be
declared as a Swift Package Manager package.

This can be achieved by defining one Package.swift for all of the
XCFrameworks.

Package Manifest

// swift-tools-version:5.3
import PackageDescription

let package = Package(
 name: "Contrib",
 platforms: [
 .iOS(.v11)
],
 products: [
 .library(
 name: "Alamofire",
 targets: ["Alamofire"]
),
 ...
],
 targets: [
 .binaryTarget(
 name: "Alamofire",
 path: "Alamofire.framework"
),
 ...
]
)

Folder structure

In the end, we'll have the following file structure:

Root
├── Cartfile
├── Carthage
│ └── Build
│ ├── Alamofire.xcframework
│ ├── Fakery.xcframework
│ ├── Package.swift
│ ├── SDWebImage.xcframework
│ └── SwiftyJSON.xcframework
├── MyProject.xcodeproj
├── Sources
└── setup.sh

Package and store the binary
frameworks

Carthage is going to put the frameworks to
Carthage/Build . This is where we can take them

and archive them. As an example, you can use
the tar command:

tar cvzf Contrib.tar.gz Carthage/Build

https://support.apple.com/en-gb/guide/terminal/apdc52250ee-4659-4751-9a3a-8b7988150530/mac

Git LFS

Git LFS is a Git extension intended to make it easier to keep large-ish files in
Git. Certainly, it's possible to just add such files to Git normally, but it is not the
best idea, as it would make your repo bigger and bigger the more versions of
a given file you add.

Installing and using Git LFS is extremely easy:

brew install git-lfs
git lfs install

Then, let's add our archive to Git LFS:

git lfs track Contrib.tar.gz
git add .gitattributes

https://git-lfs.com/

Prepare the frameworks for use

We need to think of other engineers who would be interacting with the
repository. It's a good idea to create a setup script that would make sure the
Git LFS extension is installed and would pull the dependencies file. I will use tar
as an example here again:

brew install git-lfs
git lfs install
git lfs pull
tar -xvf Contrib.tar.gz

Referring from Swift Package
Manager

Since we have Package.swift now, we can refer
from local Swift packages or Xcode projects to
our binary frameworks. In your local package, it
would look like this:

In your existing packages:

// swift-tools-version:5.3
import PackageDescription

let package = Package(
 name: "CommonUI",
 platforms: [
 .iOS(.v11)
],
 products: [
 ...
],
 dependencies: [
 ...
 .package(path: "../../Contrib")
],
 targets: [
 .target(
 name: "CommonUI",
 dependencies: [
 .product(name: "SDWebImage", package: "Contrib"),
],
 path: "Sources"
)
]
)

Bottomline
As a result of this exercise, our team decreased the CI build and test time
from 10 to 6 minutes. This has a significant effect on multiple verticals:

A much faster feedback loop on the pull requests

Saving money on the CI credit

Less CO₂, since we need to spin the CPU less

Since it is faster to build the project locally, there is less chance for an
engineer to lose focus

Satisfaction from not rebuilding Firebase over and over: priceless

Q&A

QQ: Should one consider switching to Carthage
altogether?

In my opinion no, because Swift PM allows for modularization.

QQ: Why use XCFramework format, specifically?

This format, in comparison to a regular framework , allows the packaging of
several binaries of the same SDK for different architectures. In practice, this
means Apple Silicon simulator support.

QQ: Any additional effect from this?

One of the effects of this optimization is that the dependencies are now
dynamic frameworks. This has pros and cons:

If you have multiple targets, every target would be able to link to the
frameworks without growing in size. Static frameworks would be included
in every target multiplying the size.

Dynamic frameworks negatively affect your app's startup time. iOS takes
some time to load dynamic libraries on the app startup.

Thanks for listening!

Thanks Grammarly for hosting

I use Grammarly daily. Also for this presentation.

More questions?

Companion post here https://gera.cx/posts/cache-spm

Twitter: @gk0io
Github: mikeger
Email: mike@gera.cx

https://gera.cx/posts/cache-spm
https://twitter.com/gk0io
https://github.com/mikeger
mailto:mike@gera.cx

	
	
	
	
	
	
	
	
	
	Caching external SPM packages
	Who I am
	What is happening?
	Where I work
	Previous talks around this topic

	Moving a large project from Cocoapods to Swift Package Manager
	Build times
	Looking at the build timeline
	What takes up compilation time?

	Why build the same things over and over again?
	Same Input + Same Process = Same Output
	Wait Mike, this is Bazel
	Reinventing Carthage
	What we'll do
	Hm
	Let's get building
	Install and run Carthage
	Expose the frameworks to Swift Package Manager
	Package Manifest
	Folder structure
	Package and store the binary frameworks
	Git LFS
	Prepare the frameworks for use
	Referring from Swift Package Manager
	In your existing packages:

	Bottomline
	Q&A
	QQ: Should one consider switching to Carthage altogether?
	QQ: Why use XCFramework format, specifically?
	QQ: Any additional effect from this?
	Thanks for listening!
	Thanks Grammarly for hosting
	More questions?

